Brady Elster

🔺 belster@auburn.edu | 🖬 LinkedIn Profile | 🖓 Github Profile

EDUCATION

Auburn University

Doctor of Philosophy in Physics Master of Science in Physics

Ithaca College

Bachelor of Science in Physics, Minor in Mathematics

Experience

Graduate Research Assistant

Auburn University

- Conducting research on the stability of linear tearing modes in plasma, focusing on two-fluid effects
- Acquiring and applying advanced knowledge in numerical methods for solving stiff differential equations and eigenvalue problems
- Developing a computational code that integrates discretization and shooting methods to solve stiff eigenvalue differential equations

Graduate Teaching Assistant

Auburn University

- Instructed the laboratory sections of introductory algebra and calculus-based physics courses
- Designed a semester-long curriculum of student activities informed by evidence-based physics education research
- Provided weekly tutoring to introductory physics students in the department's Physics Resource Room

Undergraduate Research Assistant

Ithaca College

- Examined and characterized the stellar spectra of select Herbig Ae/Be stars in the Small Magellanic Cloud (SMC)
- Measured stellar temperatures from spectral data using curve fitting tools in Python
- Identified a relationship between accretion luminosity and Balmer Jump discontinuity using data denoising and interpolation techniques

Projects

TwoFluidTearing.jl | Julia, Git, Docker

- Developed a Julia code to numerically solve the tearing mode equations with two-fluid effects
- Utilized a combination of matrix eigenvalue and shooting methods for efficient solving
- Implemented parallel programming techniques in many functions to improve performance and extend the functionality and generalizability of the code
- Currently benchmarking the code against theoretical predictions to check the reliability of the solutions

SMCppd.py | *Python*, *Git*

- Contributed essential Python code for stellar temperature calculation
- Measured differences in stellar atmosphere models compared to experimental spectral data
- Created an algorithm to read data files, denoise and smooth data, and take numerical measurements

Technical Skills

Languages: Julia, Python, FORTRAN, R, Mojo Software: Git, VSCode, MATLAB, Mathematica Libraries: PyTorch, NumPy, Matplotlib, SciPy, AstroPy, pandas, Makie, chebfun, ggplot Frameworks: Dedalus (Python), SciML (Julia)

Auburn, AL May 2024 - Present Aug. 2022 - May 2024

Ithaca, NY Aug. 2018 - May 2022

June 2020 – Present

Auburn. AL

Aug. 2022 – May 2024 Auburn. AL

June 2020 – May 2022 Ithaca, NY

June 2020 – May 2022

January 2023 – Present